数据分析师的工作总结-第1篇
性别:男。
民族:汉族。
籍贯:浙江宁波。
现居住地:宁波。
婚姻状况:
手机:87******。
身份证:3302*********。
邮箱:job@。
求职意向。
期望行业:金融。
期望地点:宁波。
期望月薪:5000。
工作性质:全职。
到岗时间:随时。
工作经验。
起讫时间:10月至12月公司名称:xx估计有限公司职位描述:主要负责公司评级数据的核收整理,还有就是负责外部数据的收集;组建公司数据库系统,参与公司数据产品的开发工作,并制作数据产品。
起讫时间:202月至8月公司名称:xx科技发展有限公司职位描述:主要是完成数据分析项目过程中的数据提取,数据分析和数据展示工作;另外开发并持续完善公司各项业务的数据的统计分析模型,确保其准确性、实用性以及可衡量性;能够基于数据分析,得到有价值的信息,从而为公司的运营决策、产品方向、销售策略提供数据支持。
教育经验。
语言能力/技能证书。
自我评价。
本人具有较强的统筹沟通能力,具有较强的团队合作能力,性格开朗生活乐观,责任心强。对数据有很高的.敏感度,能发现数据之间的联系,具有突出的逻辑思维能力和分析判断能力,能熟练运用数据的处理及分析方法,熟练掌握spss,sas等统计软件。
数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。
数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。
其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。
那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。
常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。
统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。
另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括apriori等关联规则、聚类算法等。
另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水*、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。
统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。
自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。
我热爱自己的工作岗位,能够做到:不迟到、不早退;尊敬领导、团结同事,遵守园内各项规章制度;积极参加园里组织的各项活动;履行教师职责,协助配班老师认真负责的做好班级工作,努力保证幼儿在幼儿园度过安全、快乐的一天。
认真学习幼儿园新《纲要》及《幼儿园管理规程》,全面了解幼儿教育新动态,思想紧紧跟上现代教育的步伐。认真钻研教材,全面细致的了解每名幼儿的身心发展状况,因人施教,使幼儿得到全面发展。
在教学中,我尊重幼儿,营造*等、和谐温暖的班级氛围。用眼睛关注每个幼儿,从幼儿身上汲取闪光点,去点亮他们自信自立的明灯,我需要帮助幼儿发现自己的优势智能,建立其自信和对集体的归属感。比如在课堂上讲故事时,我会利用各种生动形象的直观教具,用丰富的表情讲故事,激发儿童的兴趣。
(1)一日常规是孩子养成良好习惯的关键,孩子们入园后不久,我就开始对孩子们进行常规的训练。
(2)课堂常规:在我和陈老师的培养教育下,我班幼儿养成了,课堂发言积极举手,老师讲话注音倾听等好习惯。提供了更多让孩子们在课堂中自由发挥的空间。
孩子的茁壮成长需要幼儿园与家长共同的配合,因此沟通工作也就成为了一个重点工程。我主动亲切地与家长沟通。我充分利用了晨接和放学的时间跟家长交流,使家长了解自己孩子在园的情况。
我及时把孩子在园的表现及出现的问题反映给家长,积极与家长联系,及时反应出现的问题,使家长了解情况,以便双方配合辅导,配合帮助孩子更好的进步。努力做到让家长满意,让家长放心,把爱撒播向每一个孩子。有人这样说过,你尊重别人,别人尊重你,在与家长交流时,我真心把他们当成自己的朋友,但他们遇到困难时,我很热情的去帮助他们,为此,我想只要自己付出了,家长才能对我工作的肯定。
在这学期,通过自己的小小努力,也取了一些成绩:
园内幼儿声乐比赛三等奖。
园内幼儿故事比赛三等奖。
园内幼儿绘画比赛二等奖、三等奖。
园内“六一”大合唱活动,幼儿表现很积极,家长很赞扬。
回顾一学期的工作,我深刻体会到,教师工作非常辛苦,不仅担负着教授知识的工作,更担负着培育下一代的重担。老师是孩子们集体的教育者、组织者和领导者,也是幼教教育工作主力军,老师像孩子的妈妈,更是孩子信赖的好朋友。做一名优秀的幼儿教师必须具备爱心、责任心,就好像对孩子要求,在对待学习接受慢的孩子多点耐心,多点关心,使每个孩子在期末都有不同的变化,全面、公*的热爱每一名幼儿。我要从幼儿心理发展特点出发,理解他们的要求和想法,信任他们的潜在能力,放手让幼儿在实践中锻炼、成长。尽管他们有些缺点和不足,但我对于他们的每一点进步都有给予鼓励,尤其是插班生和能力差的幼儿更要多给些温暖,理解、尊重、用心培育孩子对集体和他人的爱。
在今后的工作和生活中,我还将继续向各位同事学习,以不断提高自己。一番耕耘一番收获,在新的学期里我会更加努力地做好自己的本职工作,与孩子心连心。
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师:将数据还原到产品中,为产品所用。
5、数据规划师:走在产品前面,让数据有新的价值方向。
1.标准报表。
回答:发生了什么?什么时候发生的?
示例:月度或季度财务报表。
我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。
2.即席查询。
回答:有多少数量?发生了多少次?在哪里?
示例:一周内各天各种门诊的病人数量报告。
即席查询的最大好处是,让你不断提出问题并寻找答案。
3.多维分析。
回答:问题到底出在哪里?我该如何寻找答案?
示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。
通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。
4.警报。
回答:我什么时候该有所反应?现在该做什么?
示例:当销售额落后于目标时,销售总监将收到警报。
5.统计分析。
回答:为什么会出现这种情况?我错失了什么机会?
示例:银行可以弄清楚为什么重新申请房贷的客户在增多。
这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。
6.预报。
回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?
示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。
预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。
7.预测型建模。
回答:接下来会发生什么?它对业务的影响程度如何?
示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。
如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。
8.优化。
回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?
示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。
优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。
述职报告是述职者向上自己的上级领导和群众汇报自己守职尽责和施政情况的报告,如何写述职报告。述职报告根据不同时间范围,又可分为若干种不同的类型,如年度述职报告、任期述职报告、阶段述职报告等。因为时间不同,述职报告的特点也不同,它们在写作上各有其侧重,但基本内容和要求是一样的。
一、述职报告的内容。
不同性质、不同层次的干部所写的内容是不同的,但一般的述职报告都要写如下内容:
(一)身份和岗位职责。
对自己的身份和岗位职责及其工作目标,要首先简明扼要地叙述清楚,不然群众和领导对其报告无法衡量。因为同一层次、同一级职务,不同部门的干部其职责范围并不一样,所以述职报告开头必须首先明确自己的岗位职责和工作目标,这样领导和群众对述职者才能有清楚的认识,正确的考评。
(二)履行职责的情况。
1、主要做了哪些工作。叙述工作时要恰当分类,把所做的工作按大小项并列起来,某大项工作内容如果很多,可再分小项。把工作项目按逻辑顺序排列清楚,积压项内容恰当归类。
2、做工作的指导思想。给合如何贯彻党和国家的方针、政策,写某项工作为什么要这样抓紧,要以现实观念和未来眼光作简要的理论阐述。
3、可以体现工作成果的事实和数据。如今昔的变化、数字的比较、计划指标与完成指标的比较、群众的情绪和反映等。
4、在自己职权范围内,有哪些开拓性的工作。包括调查研究工作,自己有哪些创见,为实现自己的主张做了哪些努力,遇到了哪些困难,是怎样完成的,述职报告《如何写述职报告》。
......试读结束,免费注册后可下载完整电子版(数据分析师的工作总结范文(19篇).doc)